
 GEO Quarterly No 35 The Group for Earth Observation September 2012

16 www.geo-web.org.uk

David Taylor, GM8ARV

I had been looking for a way to record a few weather
parameters on a casual basis for some time and had already
found indoor and outdoor temperature probes available on
the Internet; I later discovered an indoor temperature and
humidity probe. However, pressure seemed to elude the
Chinese makers of these probes so, late last year, I bought
a wireless weather station—which would have been ideal
were the software up to the same standard as the hardware.
Unfortunately though, while the indoor display panel worked
most of the time, it was so unreliable when interrogated by
software that I sent the unit back for a refund. During my
Internet explorations I discovered a low-cost pressure sensor,
which was an add-on hardware to an Arduino compatible
computer. The discovery was the JeeNode from JeeLabs.

http://jeelabs.com/products/jeenode

Seeing Guy Martin’s recent article made me realise that this
alternative approach might be of interest to GEO readers, as
only a very few non-surface-mount components are required,
and the programming model is the widely supported Arduino.

http://www.arduino.cc/
The JeeNode
JeeLabs offer a variety of formats of hardware, all designed
for ‘physical computing’ (i.e. real-world measurements)
and the hardware is designed to be very easy to connect
together. The main computing part is designed around
Arduino compatibility, so there’s plenty of software available,

and there is an extensive library of software to support the
hardware boards you can add to a JeeNode. I wanted to drive
this from a PC, so I chose a JeeNode with a USB port, but
there is quite an interest in battery-powered JeeNodes which
can be interrogated remotely with an 868 MHz RF signal.

The JeeNode can be programmed with the standard Arduino
development environment, which is well described and well
supported. There is forum here where you can get help.

http://arduino.cc/en/Guide/Environment

The development environment communicates with the
JeeNode via a USB lead with a serial COM port emulation.
Once your program (in Arduino nomenclature, your sketch) is
running on the JeeNode, the same COM port is available for
the PC to communicate with the JeeNode.

Hardware
For this project, I chose a JeeNode with a USB interface and
a Pressure Plug, a small board for theis atmospheric pressure
sensor, which is based on a BMP085 chip.

http://jeelabs.net/projects/hardware/wiki/JeeNode_USB

http://jeelabs.net/projects/hardware/wiki/Pressure_Plug

You can get various multi-pin connectors to solder to the
board to adapt the confi guration to best suit your own
needs—I used just a single 6-pin header so that I could

Figure 1 - General view of the JeeNode Barometer.

Figure 2 - An elevation view, showing how the Pressure Plus is mounted above the main JeeNode USB board.

 September 2012 The Group for Earth Observation GEO Quarterly No 35

17www.geo-web.org.uk

unplug the pressure sensor if required. You
can buy these boards ready-made (as I did),
and there are some kit options if you have
surface-mount facilities (which I do not).

Software
Getting data from the JeeNode
There is sample code provided to drive
the BMP085 in a JeeNode confi guration,
and all I had to do was to provide serial
access to that data. Most of the listing,
in Appendix 1, is simply copied from the
sample provided. As this is both my fi rst
Arduino and fi rst JeeNode program, I could
probably have done things in a much better
way. The function I wanted was to be able
to send a serial character to the board and
get back the pressure data. Line 32 in the
execution loop waits until a character is
received on the serial line. Any character
will do to elicit a response. Lines 36-45 get
the current pressure (and temperature)
reading, and calibrate it into the expected
values. Lines 48-56 send the values back
to the serial port, including a prefi x of the
characters ‘BMP’ and a carriage return
suffi x so that you could read the data a line
at a time.

Using the Data
As regular readers may recall, I am a fan of
MRTG for simple graphing of data over both
short and long intervals, so I wrote a small
program which interrogates the JeeNode
and returns data in a suitable form for
MRTG. Please contact me if you wish a
copy of this program.

You could easily write a program in
Visual Basic, or your favourite language,
to interrogate the data by sending one
character to the COM port, and reading the
response.

An alternative, should you wish a stand-
alone unit such as Guy Martin described
in GEO Quarterly 34, would be to add
a compatible graphics board from the
JeeLabs shop and program it appropriately.

http://jeelabs.com/products/graphics-board

The Photos
Figure 1 shows a general view of the
JeeNode Baraometer, looking directly down
on the board. The USB connector is on the
right and the (unused) RF interface on the
left. The pink wire is the antenna for the RF
interface. The Pressure Plug is the square
board left of centre, and you can just see
a few of the pins from the surface-mount
processor to the right of it. The chip right of
centre is the FTDI serial-to-USB chip. There
are red and green LEDs which fl ash when
serial data is sent or received.

Figure 2 is an elevation view of the board,
and illustrates how the Pressure Plug is
mounted above the main JeeNode USB
board. The black item is a multi-way socket
allowing the Pressure Plug to be removed
and different hardware substituted.

Appendix 1 - Code Listing
(0) // Ports demo, reads out a BMP085 sensor connected via I2C
(1) // 2009-02-17 <jc@wippler.nl> http://opensource.org/licenses/mit-license.php
(2)
(3) // 2010-05-22: added support for all resolution modes
(4) // 2010-05-25: extended to also broadcast all readings over wireless
(5) // 2010-06-17: add power saving logic, should reduce consumption by over 90%
(6) // 2010-06-24: improved power savings, several “hot spots” optimized
(7)
(8) // see http://news.jeelabs.org/2010/06/20/battery-savings-for-the-pressure-plug/
(9) // see http://news.jeelabs.org/2010/06/30/going-for-gold-with-the-bmp085/
(10)
(11) #include <JeeLib.h>
(12) #include <PortsBMP085.h>
(13)
(14) PortI2C two (4);
(15) BMP085 psensor (two, 3); // ultra high resolution
(16)
(17) // This power-saving code was shamelessly stolen from the rooms.pde sketch,
(18) // see http://code.jeelabs.org/viewvc/svn/jeelabs/trunk/jeemon/sketches/rooms/
(19)
(20) void setup() {
(21) Serial.begin(57600);
(22) Serial.print(“\n[bmp085demo]”);
(23)
(24) psensor.getCalibData();
(25) }
(26)
(27) void loop() {
(28) // sensor readout takes some time, so go into power down while waiting
(29) // int32_t traw = psensor.measure(BMP085::TEMP);
(30) // int32_t praw = psensor.measure(BMP085::PRES);
(31)
(32) if (Serial.available())
(33)
(34) {
(35) char ch = Serial.read();
(36) psensor.startMeas(BMP085::TEMP);
(37) delay(16);
(38) int32_t traw = psensor.getResult(BMP085::TEMP);
(39)
(40) psensor.startMeas(BMP085::PRES);
(41) delay(32);
(42) int32_t praw = psensor.getResult(BMP085::PRES);
(43)
(44) struct { int16_t temp; int32_t pres; } payload;
(45) psensor.calculate(payload.temp, payload.pres);
(46)
(47) // this code is not needed for use as remote node, keep it for debugging
(48) Serial.print(“BMP “);
(49) Serial.print(traw);
(50) Serial.print(‘ ‘);
(51) Serial.print(praw);
(52) Serial.print(‘ ‘);
(53) Serial.print(payload.temp);
(54) Serial.print(‘ ‘);
(55) Serial.print(payload.pres);
(56) Serial.print(“\n”);
(57)
(58) }
(59) delay (300);
(60) }

